To improve the accuracy to prevent from sharing incorrect opinion, this paper proposes a method which can share correct opinions based on majority decision for multi-opinion, named Gradient Descent Weight Tuning (GDWT). In the experiment, this paper compares GDWT with AAT and Self-information Weight Tuning (SWT) which weights the opinion from the agent has clear information from the environment to share correct opinion based on majority decision from environment-to-agent information as the previous methods. From the result of the experiment to investigate the proposed methods on some complex networks with multi-opinion, this paper reveals that (1) though the previous method performs worse in order from less kinds of opinions, the proposed methods performs well (SWT: 0.8, GDWT: 0.9 accuracy); (2) GDWT performs the best without incorrect opinions; and (3) It is clear that GDWT is sensitive for the received incorrect opinions and the own parameters, especially target opinion formation rate, as comparing with SWT. These issues are discussed for future works.
題目: 多次元意見共有モデル上のシグモイド関数に基づく誤報防止アルゴリズム
著者: 上野史, 北島瑛貴, 髙玉圭樹
誌名: 人工知能学会論文誌
詳細: 2021 年 36 巻 6 号 p. B-KB2_1-12
@article{史2021多次元意見共有モデル上のシグモイド関数に基づく誤報防止アルゴリズム,
title={多次元意見共有モデル上のシグモイド関数に基づく誤報防止アルゴリズム},
author={史, 上野 and 瑛貴, 北島 and 圭樹, 髙玉},
journal={人工知能学会論文誌},
year={2021},
volume={36},
number={6},
pages={B-KB2\_1-12},
publisher={人工知能学会}
}